If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+6c-135=0
a = 1; b = 6; c = -135;
Δ = b2-4ac
Δ = 62-4·1·(-135)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24}{2*1}=\frac{-30}{2} =-15 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24}{2*1}=\frac{18}{2} =9 $
| 4x-100=3x+100 | | 0=1.25x+0.75 | | 12^2x+1=8^3x | | x+(x+6)+((x+6)÷2)+9=38 | | X+y-2=10 | | 2=x(3+x) | | 4x-8/3=x-5 | | 4x/x-2=x+2/2 | | 3x+7/4=5/x | | -9x+8=2 | | 2p-(7-5p)/9p-(3+4p)=7/6 | | 15x-30=7x+42 | | -2/x-5=x | | -2*x-5=x | | 0.03y+0.11(5000-y)=0.42y | | 7-10x=2+15x | | 4+3=x2 | | 9x^2+5x-5=0 | | (X-4)(x-18)=(x-14) | | 1.25t^2-15t=0 | | t(1.25t-15)=0 | | 2/5x+3x-(34)=0 | | 8/x+9=11 | | 2/5x+3x=34 | | x•6-((5x+36))/30=x-36/30 | | (7x+2)(7x+2)+6(7x+2)=27 | | Y=-(2x)^-2 | | (7x+2)(7x+2)+6(7x+2)=27 | | -2x+6=-4x+2 | | 58=4x-4 | | (x+4)(x-4)=2x+9 | | (2x+4)(2x-4)=2x+9 |